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Abstract. In this paper, inspired by the idea that different nodes should play different roles in network
synchronization, we bring forward a coupling method where the coupling strength of each node depends
on its neighbors’ degrees. Compared with the uniform coupled method and the recently proposed Motter-
Zhou-Kurths method, the synchronizability of scale-free networks can be remarkably enhanced by using
the present coupling method, and the highest network synchronizability is achieved at β = 1 which is
similar to a method introduced in [AIP Conf. Proc. 776, 201 (2005)].

PACS. 89.75.Hc Networks and genealogical trees – 89.75.-k Complex systems – 05.45.Xt Synchronization;
coupled oscillators – 87.18.Sn Neural networks

1 Introduction

Many collective dynamics in social, biological and com-
munication systems can be properly described by com-
plex networks. These networks exhibit complex topolog-
ical properties such as the small-world effects and the
scale-free properties [1–4]. Many kind of network mod-
els have been made to embody these properties. The so-
called small-world networks are the intermediates of reg-
ular lattices and random networks in structure but bear
both characters of the two kind of networks, that is, they
have small average distance as random networks and large
clustering coefficient as regular ones [5]. The scale-free net-
works are a kind of small-world networks with degree dis-
tribution obeying a power-law form. A scale-free network
can be created by successively adding new nodes to the
network and connecting them with the already existing
ones by the preferential attachment rule [6].

The interesting topological properties of complex net-
works make the dynamics taking place on them much dif-
ferent from those on regular or random ones. For example,
coupled dynamical oscillators on small-world networks are
much easier to synchronize than on regular lattices, and
increasing the proportion of shortcuts of networks will
make the oscillators more synchronizable [7–10]. It has
also been observed that the more heterogeneous of the
network degree distribution is the harder for the oscilla-
tors on the network to synchronize [11]. Therefore, gener-
ally speaking, networks with short average distance and
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homogeneous degree distribution will make the oscillators
on them more synchronizable [11–14].

Very recently, motivated by practical requirements and
theoretical interest, numbers of researches have begun
to study how to enhance the network synchronizability,
especially for scale-free networks [15–20]. The method
proposed by Zhao et al. [18] can sharply reduce the max-
imal betweenness thus enhance the network synchroniz-
ability, but it will bring some economic and technologic
problems since the network structure is slightly changed.
The method proposed by Chavez et al. keeps the net-
work topology unchanged, while adding some weight into
the system [19,20]. However, to compute the weight, this
method needs the global structural information, which
is usually unavailable in huge communication systems.
Therefore, in this paper, we keep the network topology
unchanged, and concentrate on the coupling method us-
ing only the local information. The Motter-Zhou-Kurths
(MZK) method [15] is a typical example, in which the cou-
pling strength from a node i is inverse to its degree ki. In
MZK method, every neighbor of a node has the same in-
fluence (coupling strength) to this node. However, in real
networks, different nodes may have different influences.
For example, in society, some people have strong influ-
ence on others in some aspect but they are not influenced
at the same level. Another impressing phenomenon is that
in the World Trade Web, the small countries’ economies
fluctuate with the powerful countries tightly, but the con-
trary does not occur [21]. Thus here, based on the assump-
tion that different nodes play different roles, we adjust the
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influencing strength of each node receiving from their
neighbors according to the neighbors’ degrees. That is,
a node is not influenced by its neighbors equally. It is
found that oscillators on scale-free networks coupled in
this way can have much stronger propensity for synchro-
nization than in the previous ways, with the exception of
a recently introduced method [16,22], where the former is
similar to β = 1 in our model and is shown here to be the
most efficient method based on the information provided
by the degree of nearest neighbors only.

This paper is organized as follow: in Section 2, the dy-
namical equations of coupled oscillators and the master
stability function will be briefly introduced. In Section 3,
we will give the simulation and analysis about synchro-
nization of correlated scale-free networks. Finally, we will
draw our conclusion in Section 4.

2 The dynamical equations and master
stability function

For a network of N linear coupled identical oscillators, the
dynamical equation of each oscillator can be written as

ẋi = F(xi) − σ
N∑

j=1

GijH(xj), i = 1, 2, ..., N, (1)

where ẋi = F(xi) governs the dynamics of individual oscil-
lator, H(xj) the output function, σ the coupling strength,
and Gij the elements of the N × N coupling matrix. To
guarantee the synchronization manifold an invariant man-
ifold, the matrix G should has zero row-sum. Tradition-
ally, the oscillators are coupled symmetrically with uni-
form coupling strength and the coupling matrix G has
the same form as Laplacian matrix L, that is, Gij = Lij ,
where

Lij =

⎧
⎨

⎩

ki for i = j
−1 for j ∈ Λi

0 otherwise,
(2)

where ki is the degree of node i and Λi is the set of
i’s neighbors. Because of the symmetry and the positive
semidefinite of L, all its eigenvalues are nonnegative re-
als and the smallest eigenvalue λ0 is always zero, for the
rows of L have zero sum. And if the network is connected,
there is only one zero eigenvalue. Thus, the eigenvalues
can be ranked as λ0 < λ1 ≤ λ2 ≤ ... ≤ λN−1. According
to the criteria of master stability function [23–26], the net-
work synchronizability can be measured by the eigenratio
R = λN−1/λ1: the smaller it is the better the network
synchronizability and vice versa.

It is later found that networks with high heterogeneity
of degree distribution coupled uniformly are hard to syn-
chronize. As mentioned above, to eliminate this problem,
Motter, Zhou and Kurths suggested the coupling matrix
taking the form Gij = Lij/kβ

i [15–17]. This simple change
of coupling matrix enhances the network synchronizabil-
ity sharply, and the optimal condition is β = 1. And by
exploiting the information contained in the load of each

edge (i.e. set the off-diagonal elements of the zero row-
sum coupling matrix G to be Gij = lαij/

∑N
j=1 lαij , where

lij is the load of edge connecting node i and j), further
enhancement in synchronization is achieved [19,20].

Many real-world networks are highly heterogeneous
with a few nodes, named hubs, having very large degrees.
When using the uniform coupling method, these hubs will
approach to the final synchronized state faster, and slowly
the nodes with fewer degree synchronize to them [27]. If
the influence of the hubs on the low-degree nodes becomes
stronger, the latter will synchronize to the former much
easier, obviously, the network synchronizability will be en-
hanced. Therefore, we argue that not only reducing the
communication load of hubs (as did in MZK method),
but also increase their influences may further enhance the
network synchronization.

Here we take into account the effects of different de-
grees of nodes on synchronization, that is, a node in com-
plex network is not coupled uniformly by its neighbors
but the coupling strength is modulated by kα. Thus the
coupling matrix G takes the form

Gij =

⎧
⎨

⎩

Si/Sβ
i for i = j

−kα
j /Sβ

i for j ∈ Λi

0 otherwise,
(3)

where Si =
∑

j∈Λi
kα

j . When α = β = 0, this coupling
scheme degenerates to the uniform coupling scheme [23],
the case of α = 0 corresponds to the MZK method [15],
and the case of β = 1 is equivalent to the one introduced
in reference [16] (see Eq. (15) for details).

Using a similar method to the one proposed by Motter
et al. [17], we next prove that all the eigenvalues of matrix
G are real. Note that, equation (3) can be written as

G = DL′, (4)

where D = diag{k−α
1 S−β

1 , k−α
2 S−β

2 , ..., k−α
N S−β

N } is a diag-
onal matrix, and L′ = (L′

ij) is a symmetric zero row-sum
matrix, whose off-diagonal elements are L′

ij = kα
i kα

j . From
the identity

det(DL′ − λI) = det(D
1
2 L′D

1
2 − λI) (5)

valid for any λ, where “det” denotes the determinant and
I is the N ×N identity matrix, we have that the spectrum
of eigenvalues of matrix G is equal to the spectrum of a
symmetric matrix defined as

H = D
1
2 L′D

1
2 . (6)

As a result, the eigenvalues of matrix G are all nonnegative
real and the smallest eigenvalue is always zero.

3 Simulations

In our coupling method, given the parameter β, for α > 0,
nodes with large degrees have stronger influence, and for
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Fig. 1. (Color online) (a) R in the parameter plane (α, β). (b) R vs. α for different parameter β. The numerical simulations
are implemented based on the BA network of size N = 1024 and with average degree k̄ = 6. The data are obtained over 10
independent realizations.

Fig. 2. The sketch maps of three simple equivalent networks, where the arrow form node i to node j indicates the latter receives
coupling signal from the former. Their eigenratios are 2 (a), 6.8284 (b) and +∞ (c), respectively.

α < 0, nodes that bear few edges are more influential.
Parameter β is exploited to eliminate the discrepancies
between the coupling signals that each node receive: Given
α, when β = 1, each node receives the equal quantum
of signals, when β < 1, nodes that have larger sum of
neighbors’ degrees are influenced more strongly, and when
β > 1, the contrary situation occurs.

Figure 1a shows the numerical values of eigenratio
R on the parameter space (α, β) for the well-known
Barabási-Albert (BA) networks [6]. To clearly exhibit the
effects of α and β on R, we report the values of R as
a function of α for different β in Figure 1b. No matter
what value the parameter β takes, there exists a region of
α, in which the eigenratio R is smaller than that of the
case α = 0. That is to say, when proper parameters are
chosen, our coupling method can be even better than the
MZK method. Similar to the results obtained from MZK
method, β = 1.0 corresponds to the optimal case (i.e. the
highest synchronizability). Hereinafter, we concentrate on
the case of β = 1.

Note that, in the limit α = +∞ (−∞), each node is
only influenced by the neighbor having the largest (small-
est) degree. The similar situation as mentioned in refer-
ence [19] appears: The original network approaches to a
new configuration that is connected by some effective di-
rected edges [28], and the new network, named the equiva-
lent network, may be either connected or disconnected. In
the disconnected case, the eigenratio R will approach to
infinite, while in the connected case, the eigenratio equals
to 2 or some other larger constants. Figure 2 illuminates
three simple equivalent networks with α = +∞; the for-

Fig. 3. (Color online) The eigenratio R vs. parameter α at
β = 1.0 for several BA network configurations of size N =
1024 and with average degree k̄ = 6. Each color represents one
configuration.

mer two are connected, and the third one is disconnected.
Their eigenratio are 2, 6.8284 and +∞, respectively. Fig-
ure 3 shows the changes of eigenratio R with the param-
eter α with β = 1 of different network configurations.
When α > 0.4, the eigenratios for different configurations
go apart: some approach 2 or other constants not much
larger than 2, while some go to infinity, due to whether
the equivalent networks are connected or not. In addi-
tion, from the simulation, we find that with the increasing
of network size, the proportion of networks being discon-
nected when α = ∞ (−∞) will increase sharply.
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Fig. 4. (Color online) The eigenratio R vs. the parameter
α at β = 1.0 for the generalized BA networks with different
assortative coefficients r. In all cases, the average degree is
k̄ = 6, and the network size is N = 1024. The data are obtained
over 10 realizations of network configurations.

Next, we investigate the effects of degree-degree cor-
relation on the network synchronizability [29]. The cor-
related networks are generated by an extended BA al-
gorithm [30,31]: starting from m0 fully connected nodes,
then, at each time step, a new node is added to the net-
work and m (<m0) previously existing nodes are chosen
to be connected to it with probability

pi ∝ ki + k0∑
j(kj + k0)

(7)

where pi and ki denote the choosing probability and de-
gree of node i, respectively. By varying the free parameter
k0 (>−m), one can obtain the scale-free networks with
different assortative coefficients r [32,33].

Figure 4 shows the relationship between eigenratio R
and the parameter α for different assortative coefficients
given β = 1. Interestingly, there exists a unique cross point
at αcro ≈ −0.25. When α < αcro, the stronger assortative
of network predicts better synchronizability, while when
α > αcro, contrary phenomenon appears. In Figure 5, we
report the simulation results for networks with different
sizes, which heightens the reliability of the existence of this
crossed behavior. Figure 6 exhibits the cross point αcro as
a function of the network size N : it increases when N is
small, and will get steadily at about 0.25 for sufficiently
large N . Although it is interesting, unfortunately, we are
not able to provide a theoretical explanation about this
phenomenon.

4 Conclusion and discussion

The hub nodes of a highly heterogeneous network al-
ways play the major roles in determining the dynamical
behaviors of the network. In synchronizing process, the
hub nodes simultaneously have two effects. On the one
hand, the throughput of these hub nodes are too heavy,
thus they will hinder the coupling signals’ transmission.
On the other hand, they have great controlling capability

Fig. 5. (Color online) Ratio R vs. the parameter α at β =
1.0 for the generalized BA networks with different assortative
coefficients r. In each plot, the average degree is k̄ = 6, and
the network size is N = 128 (a), N = 256 (b), N = 512 (c),
N = 2048 (d). The data are obtained over 10 realizations of
network configurations.

Fig. 6. The crossed value of α vs the network size N at β =
1.0 for the generalized BA networks. In all cases, the average
degree is k̄ = 6.

for their large number of coupling neighbors. The MZK
coupling method has taken into account the former point,
and can predict much better synchronizability than the
uniform coupling method. The present method further
considers both aspects, performs even better than MZK
method, and shows that synchronizability is maximum for
a set of parameters that is equivalent to the method in-
troduced in reference [16].

Some previous works [34–37] suggested that there ex-
ists some essentially common features between network
traffic and synchronization on a dynamical level since the
performance of them both are mainly determined by the
maximal betweenness, and many methods used to enhance
the network synchronizability can also improve the traffic
conditions. Therefore, a natural question raises: will the
network throughput increase if each node tends to receive
information packets from the large-degree neighbors?
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